

Gingival microleakage in class II composite restorations using different flowable composites as liner: an in vitro evaluation

Neda Lotfi¹, Behnaz Esmaeili(DDS)², Ghazaleh Ahmadizenouz(DDS) ², Ali Bijani(MD)³, Hadi Khadem(DDS)⁴

1. Dental student, Faculty of Dentistry, Babol University of Medical Sciences, Babol-Iran.
2. Assistant professor, Dental Materials Research Center, Department of Operative Dentistry, Faculty of Dentistry, Babol University of Medical Sciences, Babol-Iran.
3. General Practitioner, Non-Communicable Pediatrics Diseases Research Center, Babol University of Medical Sciences, Babol-Iran.
4. General Dentist, Faculty of Dentistry, Babol University of Medical Sciences, Babol-Iran.

 Corresponding Author: Ghazaleh Ahmadizenouz, Faculty of Dentistry, Babol University of Medical Sciences, Babol-Iran.

Email: gazalehahmaddds@gmail.com

Tel: +981112291408-9

Received: 20 May 2014 Accepted: 7 Dec 2014

Abstract

Introduction: One of the main disadvantages of composites is marginal microleakage; using flowable composites as a liner beneath composite restorations has been recommended to reduce microleakage. The aim of this study was to assess the microleakage of class II restorations with different flowable composites liners.

Materials &Methods: 45 extracted premolars teeth with class II cavity preparation (90 cavities) were divided into five groups and filled as follows: 1.control group: hybrid composite (Z250) 2. Z250+surefil SDR flow 3.Z250+filtek supreme xt flow composite 4.Z250+Grandio flow 5.Z250+Tetric flow. Mesial and distal cavities were filled using snowplow and layering technique, respectively. After that, the samples were immersed in 0.5% fuchs solution and sectioned. Gingival microleakage was then graded. Data were analyzed using Kruskal Wallis and Mann Whitney U test.

Results: There was no significant difference between the snowplow and layering methods. Microleakage of Tetric flow and Grandio flow liners was significantly higher than the control group. Other flowable composites showed no significant difference in comparison with the control group.

Conclusion: In the present study, the results indicated that the flowable composites were not effective on reducing gingival microleakage.

Keywords: Composite resins, Dental leakage, Dental cavity lining, Polymerization

Citation for article: Lotfi N, Esmaeili B, Ahmadizenouz G, Bijani A, Khadem H. Gingival microleakage in class II composite restorations using different flowable composites as liner: an in vitro evaluation. Caspian J Dent Res 2015; 4:10-6.

بررسی آزمایشگاهی ریزنشت جینجیوالی در ترمیم های کامپوزیتی کلاس II با استفاده از کامپوزیت های قابل سیلان مختلف به عنوان لاینر

ندا لطفی، بهناز اسماعیلی، غزاله احمدی زنوز^{*}، علی بیزنسی، هادی خادم

چکیده

مقدمه: مهمترین عایق کامپوزیت ها، ریزنشت لبه ای آنها است. یکی از روش های پیشنهادی جهت کاهش ریزنشت، استفاده از کامپوزیت های قابل سیلان به عنوان لاینر در زیر ترمیم کامپوزیتی می باشد. هدف از این مطالعه بررسی ریزنشت ترمیم های کلاس II با استفاده از انواع لاینر های کامپوزیت های قابل سیلان می باشد.

مواد و روش ها: ۴۵ دندان پر مولر کشیده شده با تهیه حفرات کلاس II (نود حفره) به ۵ گروه تقسیم و بدین ترتیب ترمیم شدند: گروه ۱ (کنترل): کامپوزیت هیبرید به تنهایی (Z250) (گروه ۲: Z250+Sure fill SDR flow) گروه ۳: Z250+Filtek ۴: Z250+Tetric flow ۵: Z250+Grandio flow ۶: Z250+supreme XT:flow ۷: Z250+Tetric flow: ۸: Z250+Grandio flow: ۹: Z250+Snowplow: ۱۰: Z250+Kruskal wallis: ۱۱: Z250+mannwhitney u: ۱۲: Z250+test: ۱۳: Z250+trietic flow: ۱۴: Z250+Grandio flow: ۱۵: Z250+supreme XT:flow: ۱۶: Z250+Snowplow: ۱۷: Z250+Kruskal wallis: ۱۸: Z250+mannwhitney u: ۱۹: Z250+test: ۲۰: Z250+trietic flow: ۲۱: Z250+Grandio flow: ۲۲: Z250+supreme XT:flow: ۲۳: Z250+Snowplow: ۲۴: Z250+Kruskal wallis: ۲۵: Z250+mannwhitney u: ۲۶: Z250+test: ۲۷: Z250+trietic flow: ۲۸: Z250+Grandio flow: ۲۹: Z250+supreme XT:flow: ۳۰: Z250+Snowplow: ۳۱: Z250+Kruskal wallis: ۳۲: Z250+mannwhitney u: ۳۳: Z250+test: ۳۴: Z250+trietic flow: ۳۵: Z250+Grandio flow: ۳۶: Z250+supreme XT:flow: ۳۷: Z250+Snowplow: ۳۸: Z250+Kruskal wallis: ۳۹: Z250+mannwhitney u: ۴۰: Z250+test: ۴۱: Z250+trietic flow: ۴۲: Z250+Grandio flow: ۴۳: Z250+supreme XT:flow: ۴۴: Z250+Snowplow: ۴۵: Z250+Kruskal wallis: ۴۶: Z250+mannwhitney u: ۴۷: Z250+test: ۴۸: Z250+trietic flow: ۴۹: Z250+Grandio flow: ۵۰: Z250+supreme XT:flow: ۵۱: Z250+Snowplow: ۵۲: Z250+Kruskal wallis: ۵۳: Z250+mannwhitney u: ۵۴: Z250+test: ۵۵: Z250+trietic flow: ۵۶: Z250+Grandio flow: ۵۷: Z250+supreme XT:flow: ۵۸: Z250+Snowplow: ۵۹: Z250+Kruskal wallis: ۶۰: Z250+mannwhitney u: ۶۱: Z250+test: ۶۲: Z250+trietic flow: ۶۳: Z250+Grandio flow: ۶۴: Z250+supreme XT:flow: ۶۵: Z250+Snowplow: ۶۶: Z250+Kruskal wallis: ۶۷: Z250+mannwhitney u: ۶۸: Z250+test: ۶۹: Z250+trietic flow: ۷۰: Z250+Grandio flow: ۷۱: Z250+supreme XT:flow: ۷۲: Z250+Snowplow: ۷۳: Z250+Kruskal wallis: ۷۴: Z250+mannwhitney u: ۷۵: Z250+test: ۷۶: Z250+trietic flow: ۷۷: Z250+Grandio flow: ۷۸: Z250+supreme XT:flow: ۷۹: Z250+Snowplow: ۸۰: Z250+Kruskal wallis: ۸۱: Z250+mannwhitney u: ۸۲: Z250+test: ۸۳: Z250+trietic flow: ۸۴: Z250+Grandio flow: ۸۵: Z250+supreme XT:flow: ۸۶: Z250+Snowplow: ۸۷: Z250+Kruskal wallis: ۸۸: Z250+mannwhitney u: ۸۹: Z250+test: ۹۰: Z250+trietic flow: ۹۱: Z250+Grandio flow: ۹۲: Z250+supreme XT:flow: ۹۳: Z250+Snowplow: ۹۴: Z250+Kruskal wallis: ۹۵: Z250+mannwhitney u: ۹۶: Z250+test: ۹۷: Z250+trietic flow: ۹۸: Z250+Grandio flow: ۹۹: Z250+supreme XT:flow: ۱۰۰: Z250+Snowplow: ۱۰۱: Z250+Kruskal wallis: ۱۰۲: Z250+mannwhitney u: ۱۰۳: Z250+test: ۱۰۴: Z250+trietic flow: ۱۰۵: Z250+Grandio flow: ۱۰۶: Z250+supreme XT:flow: ۱۰۷: Z250+Snowplow: ۱۰۸: Z250+Kruskal wallis: ۱۰۹: Z250+mannwhitney u: ۱۱۰: Z250+test: ۱۱۱: Z250+trietic flow: ۱۱۲: Z250+Grandio flow: ۱۱۳: Z250+supreme XT:flow: ۱۱۴: Z250+Snowplow: ۱۱۵: Z250+Kruskal wallis: ۱۱۶: Z250+mannwhitney u: ۱۱۷: Z250+test: ۱۱۸: Z250+trietic flow: ۱۱۹: Z250+Grandio flow: ۱۲۰: Z250+supreme XT:flow: ۱۲۱: Z250+Snowplow: ۱۲۲: Z250+Kruskal wallis: ۱۲۳: Z250+mannwhitney u: ۱۲۴: Z250+test: ۱۲۵: Z250+trietic flow: ۱۲۶: Z250+Grandio flow: ۱۲۷: Z250+supreme XT:flow: ۱۲۸: Z250+Snowplow: ۱۲۹: Z250+Kruskal wallis: ۱۳۰: Z250+mannwhitney u: ۱۳۱: Z250+test: ۱۳۲: Z250+trietic flow: ۱۳۳: Z250+Grandio flow: ۱۳۴: Z250+supreme XT:flow: ۱۳۵: Z250+Snowplow: ۱۳۶: Z250+Kruskal wallis: ۱۳۷: Z250+mannwhitney u: ۱۳۸: Z250+test: ۱۳۹: Z250+trietic flow: ۱۴۰: Z250+Grandio flow: ۱۴۱: Z250+supreme XT:flow: ۱۴۲: Z250+Snowplow: ۱۴۳: Z250+Kruskal wallis: ۱۴۴: Z250+mannwhitney u: ۱۴۵: Z250+test: ۱۴۶: Z250+trietic flow: ۱۴۷: Z250+Grandio flow: ۱۴۸: Z250+supreme XT:flow: ۱۴۹: Z250+Snowplow: ۱۵۰: Z250+Kruskal wallis: ۱۵۱: Z250+mannwhitney u: ۱۵۲: Z250+test: ۱۵۳: Z250+trietic flow: ۱۵۴: Z250+Grandio flow: ۱۵۵: Z250+supreme XT:flow: ۱۵۶: Z250+Snowplow: ۱۵۷: Z250+Kruskal wallis: ۱۵۸: Z250+mannwhitney u: ۱۵۹: Z250+test: ۱۶۰: Z250+trietic flow: ۱۶۱: Z250+Grandio flow: ۱۶۲: Z250+supreme XT:flow: ۱۶۳: Z250+Snowplow: ۱۶۴: Z250+Kruskal wallis: ۱۶۵: Z250+mannwhitney u: ۱۶۶: Z250+test: ۱۶۷: Z250+trietic flow: ۱۶۸: Z250+Grandio flow: ۱۶۹: Z250+supreme XT:flow: ۱۷۰: Z250+Snowplow: ۱۷۱: Z250+Kruskal wallis: ۱۷۲: Z250+mannwhitney u: ۱۷۳: Z250+test: ۱۷۴: Z250+trietic flow: ۱۷۵: Z250+Grandio flow: ۱۷۶: Z250+supreme XT:flow: ۱۷۷: Z250+Snowplow: ۱۷۸: Z250+Kruskal wallis: ۱۷۹: Z250+mannwhitney u: ۱۸۰: Z250+test: ۱۸۱: Z250+trietic flow: ۱۸۲: Z250+Grandio flow: ۱۸۳: Z250+supreme XT:flow: ۱۸۴: Z250+Snowplow: ۱۸۵: Z250+Kruskal wallis: ۱۸۶: Z250+mannwhitney u: ۱۸۷: Z250+test: ۱۸۸: Z250+trietic flow: ۱۸۹: Z250+Grandio flow: ۱۹۰: Z250+supreme XT:flow: ۱۹۱: Z250+Snowplow: ۱۹۲: Z250+Kruskal wallis: ۱۹۳: Z250+mannwhitney u: ۱۹۴: Z250+test: ۱۹۵: Z250+trietic flow: ۱۹۶: Z250+Grandio flow: ۱۹۷: Z250+supreme XT:flow: ۱۹۸: Z250+Snowplow: ۱۹۹: Z250+Kruskal wallis: ۲۰۰: Z250+mannwhitney u: ۲۰۱: Z250+test: ۲۰۲: Z250+trietic flow: ۲۰۳: Z250+Grandio flow: ۲۰۴: Z250+supreme XT:flow: ۲۰۵: Z250+Snowplow: ۲۰۶: Z250+Kruskal wallis: ۲۰۷: Z250+mannwhitney u: ۲۰۸: Z250+test: ۲۰۹: Z250+trietic flow: ۲۱۰: Z250+Grandio flow: ۲۱۱: Z250+supreme XT:flow: ۲۱۲: Z250+Snowplow: ۲۱۳: Z250+Kruskal wallis: ۲۱۴: Z250+mannwhitney u: ۲۱۵: Z250+test: ۲۱۶: Z250+trietic flow: ۲۱۷: Z250+Grandio flow: ۲۱۸: Z250+supreme XT:flow: ۲۱۹: Z250+Snowplow: ۲۲۰: Z250+Kruskal wallis: ۲۲۱: Z250+mannwhitney u: ۲۲۲: Z250+test: ۲۲۳: Z250+trietic flow: ۲۲۴: Z250+Grandio flow: ۲۲۵: Z250+supreme XT:flow: ۲۲۶: Z250+Snowplow: ۲۲۷: Z250+Kruskal wallis: ۲۲۸: Z250+mannwhitney u: ۲۲۹: Z250+test: ۲۳۰: Z250+trietic flow: ۲۳۱: Z250+Grandio flow: ۲۳۲: Z250+supreme XT:flow: ۲۳۳: Z250+Snowplow: ۲۳۴: Z250+Kruskal wallis: ۲۳۵: Z250+mannwhitney u: ۲۳۶: Z250+test: ۲۳۷: Z250+trietic flow: ۲۳۸: Z250+Grandio flow: ۲۳۹: Z250+supreme XT:flow: ۲۴۰: Z250+Snowplow: ۲۴۱: Z250+Kruskal wallis: ۲۴۲: Z250+mannwhitney u: ۲۴۳: Z250+test: ۲۴۴: Z250+trietic flow: ۲۴۵: Z250+Grandio flow: ۲۴۶: Z250+supreme XT:flow: ۲۴۷: Z250+Snowplow: ۲۴۸: Z250+Kruskal wallis: ۲۴۹: Z250+mannwhitney u: ۲۵۰: Z250+test: ۲۵۱: Z250+trietic flow: ۲۵۲: Z250+Grandio flow: ۲۵۳: Z250+supreme XT:flow: ۲۵۴: Z250+Snowplow: ۲۵۵: Z250+Kruskal wallis: ۲۵۶: Z250+mannwhitney u: ۲۵۷: Z250+test: ۲۵۸: Z250+trietic flow: ۲۵۹: Z250+Grandio flow: ۲۶۰: Z250+supreme XT:flow: ۲۶۱: Z250+Snowplow: ۲۶۲: Z250+Kruskal wallis: ۲۶۳: Z250+mannwhitney u: ۲۶۴: Z250+test: ۲۶۵: Z250+trietic flow: ۲۶۶: Z250+Grandio flow: ۲۶۷: Z250+supreme XT:flow: ۲۶۸: Z250+Snowplow: ۲۶۹: Z250+Kruskal wallis: ۲۷۰: Z250+mannwhitney u: ۲۷۱: Z250+test: ۲۷۲: Z250+trietic flow: ۲۷۳: Z250+Grandio flow: ۲۷۴: Z250+supreme XT:flow: ۲۷۵: Z250+Snowplow: ۲۷۶: Z250+Kruskal wallis: ۲۷۷: Z250+mannwhitney u: ۲۷۸: Z250+test: ۲۷۹: Z250+trietic flow: ۲۸۰: Z250+Grandio flow: ۲۸۱: Z250+supreme XT:flow: ۲۸۲: Z250+Snowplow: ۲۸۳: Z250+Kruskal wallis: ۲۸۴: Z250+mannwhitney u: ۲۸۵: Z250+test: ۲۸۶: Z250+trietic flow: ۲۸۷: Z250+Grandio flow: ۲۸۸: Z250+supreme XT:flow: ۲۸۹: Z250+Snowplow: ۲۹۰: Z250+Kruskal wallis: ۲۹۱: Z250+mannwhitney u: ۲۹۲: Z250+test: ۲۹۳: Z250+trietic flow: ۲۹۴: Z250+Grandio flow: ۲۹۵: Z250+supreme XT:flow: ۲۹۶: Z250+Snowplow: ۲۹۷: Z250+Kruskal wallis: ۲۹۸: Z250+mannwhitney u: ۲۹۹: Z250+test: ۳۰۰: Z250+trietic flow: ۳۰۱: Z250+Grandio flow: ۳۰۲: Z250+supreme XT:flow: ۳۰۳: Z250+Snowplow: ۳۰۴: Z250+Kruskal wallis: ۳۰۵: Z250+mannwhitney u: ۳۰۶: Z250+test: ۳۰۷: Z250+trietic flow: ۳۰۸: Z250+Grandio flow: ۳۰۹: Z250+supreme XT:flow: ۳۱۰: Z250+Snowplow: ۳۱۱: Z250+Kruskal wallis: ۳۱۲: Z250+mannwhitney u: ۳۱۳: Z250+test: ۳۱۴: Z250+trietic flow: ۳۱۵: Z250+Grandio flow: ۳۱۶: Z250+supreme XT:flow: ۳۱۷: Z250+Snowplow: ۳۱۸: Z250+Kruskal wallis: ۳۱۹: Z250+mannwhitney u: ۳۲۰: Z250+test: ۳۲۱: Z250+trietic flow: ۳۲۲: Z250+Grandio flow: ۳۲۳: Z250+supreme XT:flow: ۳۲۴: Z250+Snowplow: ۳۲۵: Z250+Kruskal wallis: ۳۲۶: Z250+mannwhitney u: ۳۲۷: Z250+test: ۳۲۸: Z250+trietic flow: ۳۲۹: Z250+Grandio flow: ۳۳۰: Z250+supreme XT:flow: ۳۳۱: Z250+Snowplow: ۳۳۲: Z250+Kruskal wallis: ۳۳۳: Z250+mannwhitney u: ۳۳۴: Z250+test: ۳۳۵: Z250+trietic flow: ۳۳۶: Z250+Grandio flow: ۳۳۷: Z250+supreme XT:flow: ۳۳۸: Z250+Snowplow: ۳۳۹: Z250+Kruskal wallis: ۳۴۰: Z250+mannwhitney u: ۳۴۱: Z250+test: ۳۴۲: Z250+trietic flow: ۳۴۳: Z250+Grandio flow: ۳۴۴: Z250+supreme XT:flow: ۳۴۵: Z250+Snowplow: ۳۴۶: Z250+Kruskal wallis: ۳۴۷: Z250+mannwhitney u: ۳۴۸: Z250+test: ۳۴۹: Z250+trietic flow: ۳۵۰: Z250+Grandio flow: ۳۵۱: Z250+supreme XT:flow: ۳۵۲: Z250+Snowplow: ۳۵۳: Z250+Kruskal wallis: ۳۵۴: Z250+mannwhitney u: ۳۵۵: Z250+test: ۳۵۶: Z250+trietic flow: ۳۵۷: Z250+Grandio flow: ۳۵۸: Z250+supreme XT:flow: ۳۵۹: Z250+Snowplow: ۳۶۰: Z250+Kruskal wallis: ۳۶۱: Z250+mannwhitney u: ۳۶۲: Z250+test: ۳۶۳: Z250+trietic flow: ۳۶۴: Z250+Grandio flow: ۳۶۵: Z250+supreme XT:flow: ۳۶۶: Z250+Snowplow: ۳۶۷: Z250+Kruskal wallis: ۳۶۸: Z250+mannwhitney u: ۳۶۹: Z250+test: ۳۷۰: Z250+trietic flow: ۳۷۱: Z250+Grandio flow: ۳۷۲: Z250+supreme XT:flow: ۳۷۳: Z250+Snowplow: ۳۷۴: Z250+Kruskal wallis: ۳۷۵: Z250+mannwhitney u: ۳۷۶: Z250+test: ۳۷۷: Z250+trietic flow: ۳۷۸: Z250+Grandio flow: ۳۷۹: Z250+supreme XT:flow: ۳۸۰: Z250+Snowplow: ۳۸۱: Z250+Kruskal wallis: ۳۸۲: Z250+mannwhitney u: ۳۸۳: Z250+test: ۳۸۴: Z250+trietic flow: ۳۸۵: Z250+Grandio flow: ۳۸۶: Z250+supreme XT:flow: ۳۸۷: Z250+Snowplow: ۳۸۸: Z250+Kruskal wallis: ۳۸۹: Z250+mannwhitney u: ۳۹۰: Z250+test: ۳۹۱: Z250+trietic flow: ۳۹۲: Z250+Grandio flow: ۳۹۳: Z250+supreme XT:flow: ۳۹۴: Z250+Snowplow: ۳۹۵: Z250+Kruskal wallis: ۳۹۶: Z250+mannwhitney u: ۳۹۷: Z250+test: ۳۹۸: Z250+trietic flow: ۳۹۹: Z250+Grandio flow: ۴۰۰: Z250+supreme XT:flow: ۴۰۱: Z250+Snowplow: ۴۰۲: Z250+Kruskal wallis: ۴۰۳: Z250+mannwhitney u: ۴۰۴: Z250+test: ۴۰۵: Z250+trietic flow: ۴۰۶: Z250+Grandio flow: ۴۰۷: Z250+supreme XT:flow: ۴۰۸: Z250+Snowplow: ۴۰۹: Z250+Kruskal wallis: ۴۱۰: Z250+mannwhitney u: ۴۱۱: Z250+test: ۴۱۲: Z250+trietic flow: ۴۱۳: Z250+Grandio flow: ۴۱۴: Z250+supreme XT:flow: ۴۱۵: Z250+Snowplow: ۴۱۶: Z250+Kruskal wallis: ۴۱۷: Z250+mannwhitney u: ۴۱۸: Z250+test: ۴۱۹: Z250+trietic flow: ۴۲۰: Z250+Grandio flow: ۴۲۱: Z250+supreme XT:flow: ۴۲۲: Z250+Snowplow: ۴۲۳: Z250+Kruskal wallis: ۴۲۴: Z250+mannwhitney u: ۴۲۵: Z250+test: ۴۲۶: Z250+trietic flow: ۴۲۷: Z250+Grandio flow: ۴۲۸: Z250+supreme XT:flow: ۴۲۹: Z250+Snowplow: ۴۳۰: Z250+Kruskal wallis: ۴۳۱: Z250+mannwhitney u: ۴۳۲: Z250+test: ۴۳۳: Z250+trietic flow: ۴۳۴: Z250+Grandio flow: ۴۳۵: Z250+supreme XT:flow: ۴۳۶: Z250+Snowplow: ۴۳۷: Z250+Kruskal wallis: ۴۳۸: Z250+mannwhitney u: ۴۳۹: Z250+test: ۴۴۰: Z250+trietic flow: ۴۴۱: Z250+Grandio flow: ۴۴۲: Z250+supreme XT:flow: ۴۴۳: Z250+Snowplow: ۴۴۴: Z250+Kruskal wallis: ۴۴۵: Z250+mannwhitney u: ۴۴۶: Z250+test: ۴۴۷: Z250+trietic flow: ۴۴۸: Z250+Grandio flow: ۴۴۹: Z250+supreme XT:flow: ۴۵۰: Z250+Snowplow: ۴۵۱: Z250+Kruskal wallis: ۴۵۲: Z250+mannwhitney u: ۴۵۳: Z250+test: ۴۵۴: Z250+trietic flow: ۴۵۵: Z250+Grandio flow: ۴۵۶: Z250+supreme XT:flow: ۴۵۷: Z250+Snowplow: ۴۵۸: Z250+Kruskal wallis: ۴۵۹: Z250+mannwhitney u: ۴۶۰: Z250+test: ۴۶۱: Z250+trietic flow: ۴۶۲: Z250+Grandio flow: ۴۶۳: Z250+supreme XT:flow: ۴۶۴: Z250+Snowplow: ۴۶۵: Z250+Kruskal wallis: ۴۶۶: Z250+mannwhitney u: ۴۶۷: Z250+test: ۴۶۸: Z250+trietic flow: ۴۶۹: Z250+Grandio flow: ۴۷۰: Z250+supreme XT:flow: ۴۷۱: Z250+Snowplow: ۴۷۲: Z250+Kruskal wallis: ۴۷۳: Z250+mannwhitney u: ۴۷۴: Z250+test: ۴۷۵: Z250+trietic flow: ۴۷۶: Z250+Grandio flow: ۴۷۷: Z250+supreme XT:flow: ۴۷۸: Z250+Snowplow: ۴۷۹: Z250+Kruskal wallis: ۴۸۰: Z250+mannwhitney u: ۴۸۱: Z250+test: ۴۸۲: Z250+trietic flow: ۴۸۳: Z250+Grandio flow: ۴۸۴: Z250+supreme XT:flow: ۴۸۵: Z250+Snowplow: ۴۸۶: Z250+Kruskal wallis: ۴۸۷: Z250+mannwhitney u: ۴۸۸: Z250+test: ۴۸۹: Z250+trietic flow: ۴۹۰: Z250+Grandio flow: ۴۹۱: Z250+supreme XT:flow: ۴۹۲: Z250+Snowplow: ۴۹۳: Z250+Kruskal wallis: ۴۹۴: Z250+mannwhitney u: ۴۹۵: Z250+test: ۴۹۶: Z250+trietic flow: ۴۹۷: Z250+Grandio flow: ۴۹۸: Z250+supreme XT:flow: ۴۹۹: Z250+Snowplow: ۵۰۰: Z250+Kruskal wallis: ۵۰۱: Z250+mannwhitney u: ۵۰۲: Z250+test: ۵۰۳: Z250+trietic flow: ۵۰۴: Z250+Grandio flow: ۵۰۵: Z250+supreme XT:flow: ۵۰۶: Z250+Snowplow: ۵۰۷: Z250+Kruskal wallis: ۵۰۸: Z250+mannwhitney u: ۵۰۹: Z250+test: ۵۱۰: Z250+trietic flow: ۵۱۱: Z250+Grandio flow: ۵۱۲: Z250+supreme XT:flow: ۵۱۳: Z250+Snowplow: ۵۱۴: Z250+Kruskal wallis: ۵۱۵: Z250+mannwhitney u: ۵۱۶: Z250+test: ۵۱۷: Z250+trietic flow: ۵۱۸: Z250+Grandio flow: ۵۱۹: Z250+supreme XT:flow: ۵۲۰: Z250+Snowplow: ۵۲۱: Z250+Kruskal wallis: ۵۲۲: Z250+mannwhitney u: ۵۲۳: Z250+test: ۵۲۴: Z250+trietic flow: ۵۲۵: Z250+Grandio flow: ۵۲۶: Z250+supreme XT:flow: ۵۲۷: Z250+Snowplow: ۵۲۸: Z250+Kruskal wallis: ۵۲۹: Z250+mannwhitney u: ۵۳۰: Z250+test: ۵۳۱: Z250+trietic flow: ۵۳۲: Z250+Grandio flow: ۵۳۳: Z250+supreme XT:flow: ۵۳۴: Z250+Snowplow: ۵۳۵: Z250+Kruskal wallis: ۵۳۶: Z250+mannwhitney u: ۵۳۷: Z250+test: ۵۳۸: Z250+trietic flow: ۵۳۹: Z250+Grandio flow: ۵۴۰: Z250+supreme XT:flow: ۵۴۱: Z250+Snowplow: ۵۴۲: Z250+Kruskal wallis: ۵۴۳: Z250+mannwhitney u: ۵۴۴: Z250+test: ۵۴۵: Z250+trietic flow: ۵۴۶: Z250+Grandio flow: ۵۴۷: Z250+supreme XT:flow: ۵۴۸: Z250+Snowplow: ۵۴۹: Z250+Kruskal wallis: ۵۵۰: Z250+mannwhitney u: ۵۵۱: Z250+test: ۵۵۲: Z250+trietic flow: ۵۵۳: Z250+Grandio flow: ۵۵۴: Z250+supreme XT:flow: ۵۵۵: Z250+Snowplow: ۵۵۶: Z250+Kruskal wallis: ۵۵۷: Z250+mannwhitney u: ۵۵۸: Z250+test: ۵۵۹: Z250+trietic flow: ۵۶۰: Z250+Grandio flow: ۵۶۱: Z250+supreme XT:flow: ۵۶۲: Z250+Snowplow: ۵۶۳: Z250+Kruskal wallis: ۵۶۴: Z250+mannwhitney u: ۵۶۵: Z250+test: ۵۶۶: Z250+trietic flow: ۵۶۷: Z250+Grandio flow: ۵۶۸: Z250+supreme XT:flow: ۵۶۹: Z250+Snowplow: ۵۷۰: Z250+Kruskal wallis: ۵۷۱: Z250+mannwhitney u: ۵۷۲: Z250+test: ۵۷۳: Z250+trietic flow: ۵۷۴: Z250+Grandio flow: ۵۷۵: Z250+supreme XT:flow: ۵۷۶: Z250+Snowplow: ۵۷۷: Z250+Kruskal wallis: ۵۷۸: Z250+mannwhitney u: ۵۷۹: Z250+test: ۵۸۰: Z250+trietic flow: ۵۸۱: Z250+Grandio flow: ۵۸۲: Z250+supreme XT:flow: ۵۸۳: Z250+Snowplow: ۵۸۴: Z250+Kruskal wallis: ۵۸۵: Z250+mannwhitney u: ۵۸۶: Z250+test: ۵۸۷: Z250+trietic flow: ۵۸۸: Z250+Grandio flow: ۵۸۹: Z250+supreme XT:flow: ۵۹۰: Z250+Snowplow: ۵۹۱: Z250+Kruskal wallis: ۵۹۲: Z250+mannwhitney u: ۵۹۳: Z250+test: ۵۹۴: Z250+trietic flow: ۵۹۵: Z250+Grandio flow: ۵۹۶: Z250+supreme XT:flow: ۵۹۷: Z250+Snowplow: ۵۹۸: Z250+Kruskal wallis: ۵۹۹: Z250+mannwhitney u: ۶۰۰: Z250+test: ۶۰۱: Z250+trietic flow: ۶۰۲: Z250+Grandio flow: ۶۰۳: Z250+supreme XT:flow: ۶۰۴: Z250+Snowplow: ۶۰۵: Z250+Kruskal wallis: ۶۰۶: Z250+mannwhitney u: ۶۰۷: Z250+test: ۶۰۸: Z250+trietic flow: ۶۰

flexibility that adjust shrinkage stress. Also high percent of filler (68% weight) causes high strength of resin network.^[11]

Sure Fill SDR flow is used as a base and liner in class I and II restorations. Manufacturers claim that it can be placed in 4mm thickness. Some of the advantages of SDR are: 1.fluoride containing 2.radiopaque resin composites restorative material 3.low polymerization shrinkage 4.optimized handling for easy placement and adaptability to cavity preparation.^[11]

The aim of this study was to compare gingival microleakage in class II composite restorations using different flowable composite linings.

Methods

A total of 45 non-carious freshly extracted human premolars were used in this study. The teeth were stored in thymol 0/5% at room temperature. A scaling was used after cleaning with a rubber cup and slurry of pumice. Standard class II cavities were prepared^[12] on the mesial and distal surfaces of each tooth using 0.8 fissure bur (DRENDELL+ZWEILING, Quezon city, Philippines) and a water-cooled high speed air turbine handpiece (Diatech Dental AG, Heerbrugg, Switzerland).

The cavities measured 2mm axial depth and 3mm in buccolingual widths. All cavities were placed 1mm below cementoenamel junction. Cavosurface margins were prepared sharp without bevel. Automatrix system was used for proximal surface filling.

All cavities were etched with 37% phosphoric acid (Ivoclar Vivadent, Schaan, Lichtenstein) for 30s in enamel and 15s in dentin. Then, the prepared cavities were rinsed by using water and afterward air dried. After that, single bond (3M ESPE, St. Paul, MN, USA) adhesive was applied with a microbrush (according to the manufacturer's instructions) and light cured by Valo LED curing unit (Ultradent products Inc, UT, USA,) light curing device for 40 second at 1000 mW/cm². The intensity of the light curing unit was verified by a radiometer after every 5 specimens. Composition and manufacture of composites are shown in table 1.

The teeth were randomly divided into: 1 a group of 5 specimens as the control group and 4 groups of 10 specimens as the study groups. In the control group, both mesial and distal cavities (N=10) were filled with

an A2 shade of Z250 composite. Incremental technique^[12] was utilized to restore the cavities in which the thickness of each layer was not more than 2mm. The layers were light cured for 40s at 750mw/cm² according to the manufacturers' instruction. In group 2 to 5, Surefil SDR flow, Filtek supreme xt flow, grandio flow and Tetric flow were used respectively as a liner in mesial and distal cavities. In mesial cavities, snowplow filling technique was used^[31]; in this method, a thin layer of flowable composite was placed over gingival floor without curing and 1mm of Z250 composite was placed on unset flowable composite then the combined increment was light cured for 40s. The rest of the cavity was restored similar to the control group.

In distal cavities, one layer (less than 2mm) of flowable composite was placed on gingival floor and light cured, the rest of the cavity was restored with Z250 composite the same as control group. Polishing and finishing of the samples were conducted with Sof-Lex disks (3M ESPE, St. Paul, MN, USA). All samples were stored in artificial saliva for 24h, then thermocycled for 500 cycles between 5°C and 55°C with a dwell time of 30 seconds. After thermocycling, all teeth were dried and covered with two coats of nail varnish 1mm short of the margins. Apical foramen of the teeth was sealed with sticky wax.

Next, the samples were immersed in 0.5 Basic fuchsin dye for 24hr. After that, they were rinsed with tap water. The teeth were then mounted on epoxy resin. The samples were sectioned in mesiodistal line axis with a double-faced diamond disc (Nemov, Mashhad, Iran).

Dye penetration was determined under a stereomicroscope (Meiji Techno Co, LTD, 45176, Tokyo, Japan) at 40× and defined according to the scoring scale^[1] below 0: no dye penetration

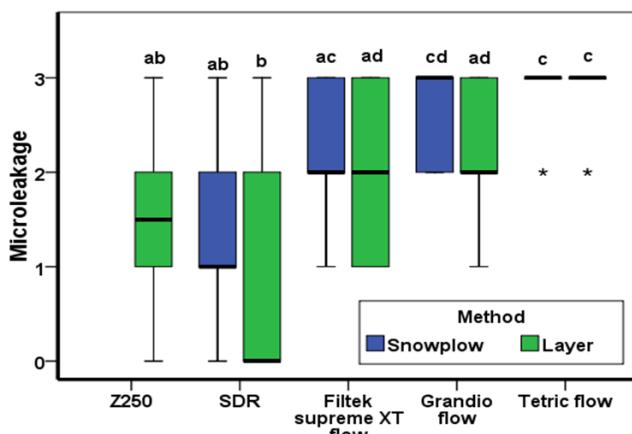
1: dye penetration less than 1/2 of the gingival floor (from margin to 1/2 of the gingival floor)

2: dye penetration more than 1/2 of the gingival floor (from 1/2 of the gingival floor up to the axial wall)

3: dye penetration along the axial wall

The data were statistically analyzed by Kruskal-Wallis analysis of variance to determine any statistical significant differences in microleakage scores among the groups at a p-value of 0.05. Mann-Whitney u-test was performed to compare the groups with each other at the 0.05 significance level.

Table1. Composition and manufacture of composite materials tested in the study


Composite	Resin composite	Filler composite	Filler weight	Average filler size	manufacture
Sure fill SDR flow	Modified UDMA, TEGDMA, EBPDMA	Barium,Strontium, Al-fluoro-silicate glass	68%	20 μ m	Dentsply- DeTrey,UK
Grandio flow	Bis- GMA,TEGDMA, HEDMA	Silicate	80.2%	Nanoparticles 0.04-3 μ m (mean 0.7)	VOCO GmbH, Cuxhaven, Germany
Tetric flow	Bis- GMA,TEGDMA, UDMA	Barium glass, ytterbium Trifluoride,Ba-Al- fluorosilicate glass, SiO ₂ ,	64.6%		Ivoclar Vivadent, Schaan, Liechtenstein
Filtek supreme xt flow	Bis- GMA,TEGDMA, Bis-EMA	ZrO ₂ -SiO ₂	65%	75nm silica Nanofiller+5- 10 nm zirconia Nanofiller+0.6- 1.4 μ m zirconia/silica	3M ESPE, St. Paul, MN, USA
Z250	Bis- GMA,UDMA,Bis- EMA	ZrO ₂ -SiO ₂	60%	0.01-3.5 μ m	3M ESPE, St. Paul, MN, USA

Results

Microleakage scores are shown in table 2. Regardless of the use of the flowable composite resin, there was no significant difference in the microleakage of class II cavities restored with snowplow or layering technique. Tetric flow (in both snowplow and layering method) and Grandio flow (in snowplow method) significantly increased microleakage compared to the control group ($p=0.004$ and $p=0.01$, respectively). The lowest amount of microleakage was observed in Surefil SDR flow group however, the difference was not statistically significant in control group. Grandio flow and Filtek supreme xt flow increased microleakage compared to the control group but the difference was not significant. Figure 1 shows comparison of the microleakage in different groups.

Table2. Number of samples showing each microleakage score at gingival margins in the study group

Method	Microleakage scores				
	0	1	2	3	Total
Snowplow Group SDR	2	4	2	2	10
Filtek Supreme XT flow	0	2	4	4	10
Grandio flow	0	0	4	6	10
Tetric flow	0	0	2	8	10
Total	2	6	12	20	40
Layer Group Z250	1	4	3	2	10
SDR	6	1	1	2	10
Filtek Supreme XT flow	0	3	3	4	10
Grandio flow	0	2	5	3	10
Tetric flow	0	0	2	8	10
Total	7	10	14	19	50

Figure1. Median microleakage in study groups with the same letters showed no significant difference

Discussion

The result of the present study showed that Surefil SDR flow as a liner had lower microleakage than other flowable composites (tetric flow, grandio flow, filtek supreme xt flow). Monomers of composites linked together to form a network when they were exposed to light. This polymerization process needs moving monomers physically closer together. This process results in polymerization shrinkage in which Van der Waals link changes to covalence link. Resin composites create a lot of stress during polymerization shrinkage that causes microleakage.^[13]

In the current study, the findings were in accordance with the ones demonstrated in other studies in which Surefil SDR flowable composite showed lower microleakage.^[11,14-15] Current composites contain organic resin matrix and inorganic fillers; when they are exposed to light cure, polymerization and volumetric shrinkage rapidly occurs; However, in Surefil SDR flow the increase of polymerization stress is reduced with time which is due to SDR patented urethane dimethacrylate structure in this composite.^[11] Urethane with incorporated photo active groups is able to control the polymerization kinetics.^[16]

One mechanism to decrease shrinkage stress is to delay the gel point. The gel point shows the increase of viscosity when network is forming. In the pre gel phase, the formed polymer chains are very flexible. In this phase, the viscosity of polymers is still low, so shrinkage stress can be compensated by plastic flow that happens during the pre-gel phase. The time that material

can not compensate the polymerization shrinkage (time until gelation) determines the final tensions in the material. Surfil SDR flow shows a delay in the gel point.^[16] Considering the increased flow capacity, lower stress builds up and better interfacial integrity of Surefil SDR flow has the lowest shrinkage rate (3-4 folds lower) compared to other flowable composites.^[16]

In this study, microleakage was evaluated only on dentinal surfaces. Based on previous studies, microleakage in dentin was more than in enamel because of the higher bond strength between composite and enamel than dentin with a tubular structure.^[17, 18] Flowable composites were recommended in some studies^[10, 19] as an interfacial layer due to their lower elastic modulus which can compensate contraction stress and act as a stress breaker and shock absorber. However, in the present study, a different result was obtained.

In this study, except for Surefil SDR flow, all other flowable composites demonstrated higher microleakage compared to the control group in both layering and snowplow techniques. Tetric flow composite showed the highest microleakage which was in accordance with the results of other studies^[6, 7, 9, 20-22]; in fact, flowable composites had more polymerization shrinkage because they had dilute monomers and less fillers.^[23] Generally, increasing the amount of the inert materials in composites (organic and inorganic fillers) may reduce the overall shrinkage of composites due to the less monomer availability for the polymerization reaction. But high filler loading results in a high degree of stiffness that can lead to high shrinkage stress, so increasing the volume fraction of filler does not invariably produce a fundamental reduction in shrinkage.^[16]

According to the result of the current study, there was no significant difference in the microleakage of Grandio flow composite (with 80.2% weight filler) and Filtek Supreme XT flow (with 65% weight filler). However, the microleakage of Tetric flow (64.6% weight filler) and Filtek Supreme XT flow with similar amount of filler was significantly different, it can be concluded that the amount of filler alone does not reduce the microleakage and other factors including chemical properties and size of matrix and filler may affect the microleakage as well.^[24] TEGDMA with low molecular weight in chemical compound of flowable composites caused the increase of polymerization

shrinkage. ^[25,26] UDMA and BIS_GMA with high molecular weight in chemical compound of Z250 composite decreased the polymerization shrinkage. ^[27,28] This in vitro study showed that only Surefil SDR flow composites had lower microleakage than Z250 composite although the difference was not significant. High molecular weight and flexibility around the centered modulator imparted high quality to Surefil SDR flow. Surefil SDR flow had low polymerization shrinkage and stress, and also high depth of cure. As a result, it is suitable for bulk placement (4mm) in class I and II cavities. ^[11]

In a study by Chuang et al. ^[19] Snowplow was recognized as an appropriate method to decrease microleakage. In this method, a thin layer of flowable composite is placed in the cavity without curing, afterwards a layer of hybrid composite is placed on it and both layers are cured simultaneously. ^[3] In the current study, however, there was no significant difference between the snowplow and layering technique which was in agreement with the results of Sood et al. ^[29]

Different results in various studies may be because of variable flowable composites with variable chemical compounds. The rate of microleakage can be increased with occlusal loading. Campos et al. study contributed the breaking down of bond depending on the intensity and duration of loading. Therefore, it is recommended that further studies be carried out under occlusal loading. ^[30]

Conclusion

The results of this study showed that the flowable composites had no effect on the decrease of gingival microleakage.

Acknowledgments

We would like to thank Dr. Evangeline Foronda for the English editing and Dental Materials Research Center of Faculty of Dentistry of Babol for supporting this study.

Funding: This study was a part of thesis and research project (Grant No: 9235717) which was supported and funded by Babol University of Medical Sciences.

Conflict of interest: There was no conflict of interest.

References

1. Araujo Fde O, Vieira LC, Monteiro Junior S. Influence of resin composite shade and location of the gingival margin on the microleakage of posterior restorations. *Oper Dent* 2006; 31: 556-61.
2. Ozgunaltay G, Gorucu J. Fracture resistance of class2 packable composite restorations with and without flowable liners. *J Oral Rehabil* 2005; 32: 111-5.
3. Summitt JB, Robbins JW, Hilton TJ, Schwartz RS. Fundamental of operative dentistry a contemporary approach. 3rd ed. Quintessence Publishing Illinois; 2006.p. 293-4,315-6.
4. Unterbrink GL, Liebenberg WH. Flowable resin composites as 'filled adhesive': literature review and clinical recommendations. *Quintessence Int* 1999; 30: 249-57.
5. Kasraei S, Azarsina M, Majidi S. In vitro comparison of microleakage of posterior composites with and without liner using two step etch and prime and self-etch dentin adhesive system. *Oper Dent* 2011; 36:213-21.
6. Tredwin CJ, Stokes A, Moles DR. Influence of flowable liner and margin location on microleakage of conventional and packable class 2 resin composites. *Oper Dent* 2005; 30:32-8.
7. Bonilla ED, Stevenson RG, Caputo AA, White SN. Microleakage resistance of minimally invasive Class I flowable composite restorations. *Oper Dent* 2012; 37:290-8.
8. Moorthy A, Hogg CH, Dowling AH, Grufferty BF, Benetti AR, Fleming GJ. Cuspal deflection and microleakage in premolar teeth restored with bulk fill flowable resin based composite base materials. *J Dent* 2012; 40:500-5.
9. Daneshkazemi AR, Davari AR, Modaresi J, Dastjerdi F, Darezereshki M. Effect of flowable composite on microleakage of packable resin composites in class2 cavities. *J Qazvin Univ Med Sci* 2009;13:23-28.[In Persian]
10. Sadeghi M. Influence of flowable material on microleakage of monofilled and hybrid class2 composite restorations with LED and QTH LCUs. *Indian J Dent Res* 2009;20:159-63.
11. Reis AF. Evaluation of a novel composite restorative system for posterior teeth: microleakage, bond strength and gap formation analysis. Available at: <http://www.surefilsdrflow.com/sites/default/files/Su>

reFil_Technical_Manual.pdf. Accessed Oct 22,2012.

12. Attar N, Turgut MD, Gungor HC. The effect of flowable resin composites as gingival increments on the microleakage of posterior resin composites. *Oper Dent* 2004;29:162-7.
13. M R, Sajjan GS, B N K, Mittal N. Effect of different placement techniques on marginal microleakage of deep class2 cavities restored with tow composite resin formulations. *J Conserv Dent* 2010;13:9-15.
14. Condon JR, Ferracane JL. Assessing the effects of composite formulation on polymerization stress. *J Am Dent Assoc* 2000; 131: 497-503.
15. Silva OE, Gomes CAA, Soares GM, Viana TO, Reis PQ, Oliviera PRA. Mikroleakage in low shrinkage restorations after occlusal loading. Available at: <https://iadr.confex.com/iadr/2012rio/webprogram/APER160726.html>. Accessed Oct 22,2012.
16. Ilie N, Hickel R. Investigations on a methacrylate-based flowable composite based on the SDR™ technology. *Dent Mater* 2011; 27: 348-55.
17. Stockton LW, Tsang ST. Microleakage of class2 posterior composite restorations with gingival margin placed entirely whitin dentin. *J Can Dent Assoc* 2007;73:255.
18. Deliperi S, Bardwell DN. An alternative method to reduce polymerization shrinkage in direct posterior composite restorations. *J Am Dent Assoc* 2002;133:1387-98.
19. Chuang SF, Jin YT, Liu JK, Chang CH, Shieh DB. Influence of flowable composite lining thickness on Class II composite restorations. *Oper Dent* 2004;29:301-8.
20. Labella R, Lambrechts P, Van Meerbeek B, Vanherle G. Polymerization shrinkage and elasticity of flowable composites and filled adhesives. *Dent Mater* 1999;15: 128-37.
21. Ziskind D, Adell I, Teperovich E, Peretz B. The effect of an intermediate layer of flowable composite resin on microleakage in packable composite restorations. *Int J Paediatr Dent* 2005;15:349-54.
22. van Dijken JW, Pallesen U. Clinical performance of a hybrid resin composite with and without an intermediate layer of flowable resin composite: a 7-year evaluation. *Dent Mater* 2011;27:150-6.
23. Stavridakis MM, Kakaboura AL, Ardu S, Krejci I. Marginal and internal adaptation of bulk-filled Class I and Cuspal coverage direct resin composite restorations. *Oper Dent* 2007;32:515-23.
24. Tjandrawinata R, Irie M, Suzuki K. Flexural properties of eight flowable light-cured restorative materials, in immediate vs 24-hour water storage. *Oper Dent* 2005; 30:239-49.
25. Cadenaro M, Marchesi G, Antonioli F, Davidson C, De Stefano Dorigo E, Breschi L. Flowability of composites is no guarantee for contraction stress reduction. *Dent Mater* 2009;25: 649-54.
26. Atai M, Watts DC, Atai Z. Shrinkage strain rates of dental resin monomer and composite systems. *Biomaterials* 2005;26:5015-20.
27. Alvares-Gayoso C, Barcelo-Santana F, Guerrero-Ibarra J, Saez-Espinola G, Canseco-Martinez MA. Calculation of contraction rates due to shrinkage in light-cured composites. *Dent Mater* 2004;20: 228-35.
28. Yap AU, Soh MS. Post gel polymerization contraction of low shrinkage composite restoratives. *Oper Dent* 2004;29: 182-7.
29. Sood A, Munjal S, Sharma K, Malik M. An in vitro evaluation of voids and porosities at different sites in classII composite resin restorations using different consistencies and placement techniques- a stereomicroscopic study. *Indian J Dent Sci* 2013;5:28.
30. Campos PE, Barceleiro Mde O, Sampaio-Filho HR, Martins LR. Evaluation of the cervical integrity during occlusal loading of class2 restorations. *Oper Dent* 2008;33:59-64.