Antimicrobial activity of three different endodontic sealers on the enterococcus faecalis and lactobacillus (in vitro)

Maryam Ehsani (DDS), Ata Adibi, Ehsanollah Moosavi (PhD), Atena Dehghani, Soraya Khafri (PhD), Elham Adibi

1. Assistant Professor, Dental Materials Research Center, Department of Endodontics, Faculty of Dentistry, Babol University of Medical Sciences, Babol - Iran.
2. Dental Student, Faculty of Dentistry, Babol University of Medical Sciences, Babol - Iran.
3. Assistant Professor, Department of Microbiology, Faculty of Medicine, Babol University of Medical Sciences, Babol - Iran.
4. Assistant Professor, Department of Social Medicine and Health, Faculty of Medicine, Babol University of Medical Sciences, Babol - Iran.
5. Medical Student, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad - Iran.

Corresponding Author: Ehsanollah Moosavi, Faculty of Medicine, Babol University of Medical Sciences, Babol-Iran.
Email: emosavi2000@yahoo.com Tel: +989111117109

Abstract

Introduction: Growth and proliferation of the remaining microorganisms within the root canals may destroy the surrounding tissue of the root and leads to periapical lesion. Consequently, the complete elimination of microorganisms from the root canal is an important goal of endodontic therapy. Endodontic sealers do not provide complete seal in root canal system, and micro spaces have always remained between the material and canal walls that lead to penetration of these spaces, so, an antibacterial activity is essential for sealers. The aim of the present study was the in vitro evaluation of antimicrobial activity of the three endodontic sealers on two microorganisms.

Methods: To study the effect of each sealer; AH26, MTA Fillapex and ADseal on Enterococcus Faecalis and Lactobacillus bacteria 10 samples were considered. In this experimental study, 60 plates were exposed to bacteria and 10 plates were considered for control group. Sealer antibacterial effect on bacterial growth was studied after 48 hours. Firstly, the freshly prepared sealers were poured inside the micro tube and diffused in the wall of the micro tube. Then solution of nutrient broth was poured into a micro tube and the determined volume of solution of bacterial suspension was added into a microtube and was kept 24 hours in the incubator to grow the bacteria. Then, it was poured in the plates of blood agar and cultured after 24 hours and then the colonies grown on the plates were counted in sufficient light. The data were analyzed with MANOVA statistical test and SPSS Version 18.

Results: Most bacteria grew in the plates of ADseal sealer and MTA fillapex sealer with means of 5113.00CFU and 3077.00CFU respectively, while the lowest number of bacteria grew in the plates of AH26 sealer with a mean of 1345.15CFU.

Conclusions: Most antibacterial activities of each enterococcus faecalis and lactobacillus bacteria sample was for AH26 sealer and MTA fillapex sealer. The lowest antibacterial activity was for ADseal sealer.

Keywords: Endodontics sealers, Antibacterial activity, Microorganisms

Received: 27 May 2013 Accepted: 5 Aug 2013
ارزیابی فعالیت ضد میکروپی سه نوع سیلر مختلف انذودنتیک علیه انتروکوک فکالیس و لاکتواسیل به روش آزمایشگاهی

چکیده
مقدمه: رشد و تکثیر میکروگانیسم‌های باقیمانده درون کنان ریشه، ممکن است باعث اطراف ریشه را تخریب کرده و باعث ایجاد شایعه بری ایپکی گردد. بنابراین هدف کامل میکروگانیسم‌ها از کنان ریشه همواره از اهداف مهم درمان انذودنتیک است. همچنین از امکانات انذودنتیک، سیلک اکسپلر میکروگانیسم‌ها را ریخته و دردجویاری می‌کند و به همین دلیل افسارهای میکروگانیسم سیلکا را ریخته و دردجویاری می‌کند و به همین دلیل
تاریکی بیشتر پرچرورت داشتن خاصیت ضدبکتریایی این مواد می‌باشد. بنابراین هدف از استفاده ارزیابی آزمایشگاهی

نمونه و روش: برای مطالعه اثر هر سیلر مانند 13 آنتروکوک فکالیس و لاکتواسیل میکروگانیسم‌ها از کنان ریشه همواره از اهداف مهم درمان انذودنتیک است. همچنین از امکانات انذودنتیک، سیلک اکسپلر میکروگانیسم‌ها را ریخته و دردجویاری می‌کند و به همین دلیل افسارهای میکروگانیسم سیلکا را ریخته و دردجویاری می‌کند و به همین دلیل

مواد و روش: برای ماشین‌های اثر هر سیلر مانند 13 آنتروکوک فکالیس و لاکتواسیل، سیلک اکسپلر میکروگانیسم‌ها را ریخته و دردجویاری می‌کند و به همین دلیل افسارهای میکروگانیسم سیلکا را ریخته و دردجویاری می‌کند و به همین دلیل

یافته‌ها: برای تعداد بیشتری رشد کرده در مجموع سیلک اکسپلر به کشیده، در پلیت‌های سیلر Adseal و MTA Fillapex، CFU با میانگین 3077.00 و CFU با میانگین 5113.00 در پلیت‌های سیلر AH26 مشاهده شد. CFU
نتیجه‌گیری: برای تعداد بیشتری رشد کرده در میانگین سیلک اکسپلر به کشیده، در پلیت‌های سیلر Adseal و MTA Fillapex، CFU با میانگین 3077.00 و CFU با میانگین 5113.00 در پلیت‌های سیلر AH26 مشاهده شد. CFU

واژگان کلیدی: سیلرهای انذودنتیک، اثرات باکتریال، میکروگانیسم‌ها

SPSS Version 18

Tukey Test–MANOVA

[ DOI: 10.22088/cjdr.2.2.8 ]
Introduction

One of the major aims of endodontic treatment is sealing the root canal system, which is directly related to the omission of microorganisms and their products by means of cleansing, mechanical shaping, irrigating with antibacterial solutions, filling the root canal and using the anti-bacterial dressing in sessions of treatments if necessary (calcium hydroxide) (1-3).

This process does not completely sterilize root canals (4). Proliferation of the remaining microorganisms may damage the surrounding tissues of the root and cause periapical lesions (5). The presence of bacteria and infection may cause apical periodontitis (6). Thus the root canal filling materials must be anti-bacterial or anti-microbial (7).

Adding anti-bacterial agents to the endodontic sealers is a method which leads to antimicrobial activity of sealers (1). Nowadays, the different sealers with specific formula such as resin, calcium hydroxide and MTA (Mineral Trioxide Aggregate) based sealers are manufactured. Resin based sealers like AH26 (Dentsply, Detrey, Konstanz Germany) are applied commonly and are useful for posterior and anterior teeth. ADseal (Meta, Michigan, United States) is a newly developed resin based sealer which has a limited data about its anti-microbial features is available (8). MTA fillapex is a MTA base sealer which has useful features like insolubility in wet environment, lack of allergic reactions after treatment and dimensional stability and appropriate setting time (9-10).

al-Khatib et al. were the first promoters for the investigation of anti-bacterial endodontic sealers in 1990 (11). From then on, some researchers used a similar model to investigate the anti-microbial features of sealers, while the different microorganisms sensitivity to antimicrobial agents following contact test is different (12-13).

In this study, Enterococcus faecalis and lactobacilli were used. With regard to the significance of the study and lack of relevant studies, we aimed to investigate the anti-bacterial features of the different types of sealers to improve endodontic treatment outcome choosing the proper sealer in clinics, and prevent from further problems.

Methods

The present study was an experimental study and the endodontic sealers such as ADseal (Meta, United States), MTA fillapex (Angelus, Brazil) and AH26 (Dentsply, Detrey, Germany) were investigated and compared.

The microorganisms of enterococcus faecalis (1394 PTCC) and lactobacilli (1643 PTCC) were prepared from the samples in standard species of Asre-Enghelab Corporation, Tehran, Iran. This study was conducted in the microbiology laboratory of the Faculty of Medicine of Babol, Iran. To study the effect of each sealer on specific bacteria, 10 samples of each case were prepared.

In this study, 60 plates were measured and after 48 hours, the effect of sealers on the bacterial growth was investigated and 10 plates were selected for the control group. Firstly, the microtubes were placed in autoclave and sterilized.

Then, the sealers were prepared based on the manufacturer’s instruction and immediately, 0.1 cc of each sealer was added to the micro tube through a syringe and distributed homogeneously on the wall of the micro tube. 1.49 cc of nutrient broth was added to the micro tube through a sampler and then 0.01 cc of bacterial suspension solution containing 150000 bacteria was added to the micro tube.

Finally micro tubes contained 1.50cc solution containing 150000 bacteria. The micro tube lid was closed and kept in autoclave at 37°C for 24 hours. With respect to the anaerobic feature of lactobacilli, the micro tubes and plates were placed in an anaerobic jar.

Culturing the Microorganisms on the Blood Agar Medium:

24 hours after the incubation of the microtubes, their lids were opened and 0.01cc of the solution was added to the plate containing blood agar through the sampler.

After sterilizing the metal loop, it was used to distribute the entire solution on the plate. Then, all the petteries were incubated at 37°C for 24 hours, the number of microorganisms cultured was counted based on colony count.

Bacterial Counting:

The number of colonies on each plate was counted. Any decrease in the number of bacteria on each plate indicated the effect of anti-bacterial activity of sealer.

Analysis:

The mean of log 10 CFU (Colony Forming Unit)/ml and Standard Deviation (SD) of bacteria was calculated and the mean, standard deviation,
distribution and data were analyzed by MANOVA and the comparison of intergroup data by TUKEY TEST using SPSS Version 18. The data from counting CFU in each group were compared and a p-value of 0.05 was determined for identifying the significance of the result.

Controlling the Positive Group:
(They are involved in the study for approving the bacteria purity and ensuring the bacteria growth during testing): 0.01 cc of enterococcus faecalis and lactobacilli bacteria grown was poured by a sampler on the separate blood agar culture medium.

Controlling the negative group:
(For ensuring the disinfection of tested sealers): 0.1 cc of AH26, MTA Fillapex and ADseal sealer was poured by Syringe on the separate blood agar culture medium. All of the 70 plates were placed in the incubator at 37 ºC for 24 hours and the number of CFU colonies in plates was counted by colony count and the data were analyzed using SPSS Version 18.

Results
The analysis of the data showed that for enterococcus faecalis bacteria, AH26 sealer with mean growth (1482/40CFU) in each plate had the most anti-bacterial effect and ADseal (5352/00CFU) had the least anti-bacterial effect (p≤0.001) (table1) (figure 1). Also, with regard to lactobacilli, the most anti-bacterial effect was related to the AH26 sealer (1207/90 CFU) and the least anti-bacterial effect was related to the ADseal (4874/00CFU) (p≤0.001) (table1) (figure2). In each bacterium, the sealers were significantly different based on the p-value count (table1).

In the positive control group, the bacteria grew completely on the plate and this rejected the presence of growth restricting infection while in the negative control group, no bacteria grew on the plate, and this rejected the possibility of infection from the sealers or plates.

On the average, the greatest number of bacterial loss in each plate (8454/85CFU) was observed for AH26 sealer and MTA Fillapex (6923/00CFU) and the least number of bacterial loss belonged to ADseal (4887/00CFU).

The ANOVA test determined the significant difference between the studied sealers regarding the anti-bacterial effect (p≤0.001) (figure 2). The most amount of bacterial growth in ADseal plates was 5113/00CFU and the least amount of bacterial growth in AH26 sealer plates was 1345/15CFU. (p≤0.001) (table 1).

Figure 1. Mean number of lost bacteria on all plates of Enterococcus Faecalis and Lactobacillus with regard to the type of sealer

*AH=AH26, MTA=MTA Fillapex, AD=ADseal, EF=Enterococcus Faecalis, LB=Lactobacillus

Figure 2. Mean number of grown bacteria in each plate with regard to the type of sealer and bacteria

AH=AH26, MTA=MTA Fillapex, AD=ADseal
The result showed that AH26 sealer had the most effect on anaerobic bacterium and 7 species of obligatory anaerobic bacterium. The results showed that MTA affected on some optional anaerobic bacterium (16). In our study, MTA sealer had effect on anaerobic bacterium.

In a study by Abulkadar et al. the anti-microbial effect of Ketac-Endo tubliseal, sealapex, apexit, and roth on porphyromonas gingivalis, peptostreptococcus micros and capnocytophagaachracea was investigated. The result showed that roth’s antibacterial effect was more than the tubliseal and apexit on peptostreptococcus micros (4). Like our study, the use of the oral anaerobic bacteria was very important. But, the sample size was restricted to two plates while in the present study; the number of samples in each group was 10 plates that was adequate.

In the study by Heling et al. the anti-microbial effect of sealapex, Ketac-Endo, AH26 sealers on enterococcus faecalis was investigated. The result showed that AH26 had the most anti-bacterial effect (17). Similar to our study, they used different kinds of sealers with various bases but they did not use the control groups.

In the study by Gorduysus et al. the anti-microbial effect of Endo-Fill sealer on the staphylococcus aureus, streptococcus pyogenes, E. Coli and pseudomonas aeruginosa was investigated. The result showed that Endo-Fill did not show any anti-bacterial features (18).

The anti-microbial feature of new sealers was investigated in their study while the number of samples was not identified, and Escherichia coli were not considered as the oral pathogens.

In Mickel et al. study, the anti-microbial effect of apexit, roth, CRCS and sealapex on the streptococcus miller was investigated. The result showed that roth had the most anti-bacterial effect and there was no significant difference between apexit and CRCS (12). The processes of study were illustrated in details and

<p>| Table 1. Mean amount of grown bacteria in each plate with regard to the type of sealer and bacteria |
|---------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|</p>
<table>
<thead>
<tr>
<th>bacteria</th>
<th>AH26 Mean±SD</th>
<th>MTA Fillapex Mean±SD</th>
<th>ADseal Mean±SD</th>
<th>P-value</th>
<th>Total Mean±SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enterococcus Faecalis</td>
<td>1482.40±532.553</td>
<td>3282±354.520</td>
<td>5352±321.310</td>
<td>&lt;0.001</td>
<td>3372.13±1656.791</td>
</tr>
<tr>
<td>Lactobacillus</td>
<td>1207.90±311.223</td>
<td>2872±368.504</td>
<td>4874±489.403</td>
<td>&lt;0.001</td>
<td>2984.63±1571.747</td>
</tr>
<tr>
<td>P-value</td>
<td>0.176</td>
<td>0.02</td>
<td>0.02</td>
<td>0.357</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1345.15±447.273</td>
<td>3077±409.995</td>
<td>5113±471.683</td>
<td>&lt;0.001</td>
<td></td>
</tr>
</tbody>
</table>

Discussion

In this study, we focused on the anti-bacterial activity of three different sealers: ADseal, MTA Fillapex and AH26 on enterococcus faecalis and lactobacillus were examined. In a study by Al-khatib et al. the anti-microbial effect of tubliseal, calcioiotic, sealapex, hypocal, nogenol, eucapercha and AH26 sealers on the streptococcus mutants, staphylococci aurous, bacteriodus endodontalis were investigated.

Various kinds of sealers and both anaerobic and aerobic bacteria and control groups were investigated. The result was similar to the result of the current study and showed that AH26 sealer had the most effect on both the aerobic and anaerobic microorganisms. And in contrast to our study, the cavity was created on the agar jelly for pouring the sealers and microbial suspension must have not been distributed on agar surface, it should have been mixed with culture medium. The number of samples and plates for each sealer and bacteria was not identified either.

In Pumarola et al. study, the anti-microbial effect of traitementspad, N2 universal, diabet, endomethasone, tublisealsealapex and AH26 on 120 species of staphylococi aurous was investigated. The results showed that diaket and treatment had the most anti-bacterial features (14). In our study, AH26 (like diaket has epoxy) had the most anti-bacterial effect. In the study by Chong et al. the anti-microbial effect of ZOE, glass ionomer cement and amalgam on the streptococcus miller and enterococcus faecalis was investigated. The result showed that glass ionomer cement had the most effect on both bacteria and ZOE placed the second, and Amalgam did not show anti-bacterial features (15).

According to our study, anaerobic bacteria were grown under anaerobic conditions in order to be matched with clinical conditions however, they did not use the control group. In Torabinejad et al. study, the anti-microbial effect of MTA and ZOE sealer and amalgam was investigated on 9 species of optional anaerobic bacterium and 7 species of obligatory anaerobic bacterium. The results showed that MTA affected on some optional anaerobic bacterium (16). In our study, MTA sealer had effect on anaerobic bacterium.
the positive and negative control groups were used in
the study which was so significant.

Siqueira et al. studied the anti-microbial effect of
Grossman’s, EWT, sealer 26, AHplus, and sealerplus
on 8 optional anaerobic bacteria and 2 obligatory
anaerobic bacteria and showed that there was no
significant difference between the sealers and most of
the sealers had the anti-bacterial features (19). They
investigated the wide spectrum of bacteria and various
sealers described the processes of research in details
similar to our research. However, they studied
Escherichia coli bacterium which was not related to
microbial floor of infected tooth root canal.

Tanomaru-Filho et al. compared the anti-bacterial
effect of MTA and AH26 sealer and portland cement
and concluded that AH26 had more anti-bacterial
activity than MTA and portland cement and MTA and
portland cement had similar anti-microbial features
(20), while in our study, AH26 sealer had more anti-
bacterial activity than MTA sealer.

Conclusions
With regard to enterococcus faecalis and
lactobacillus bacteria, AH26 sealer had the most anti-
bacterial effect and ADseal had the least anti-bacterial
effect.

Acknowledgments
The authors would like to thank the Dental
Material Research Center of Faculty of Dentistry of
Babol for supporting this study.

Funding: This study was a part of thesis and research
project (Grant No: 9032530) which was supported and
funded by Babol University of Medical Sciences.

Conflict of interest: There was no conflict of interest.

References
1.Bodrumlu E, Semiz M. Antibacterial activity of a
new endodontic sealer against Enterococcus
2. Reit C, Dahlén G. Decision making analysis of
endodontic treatment strategies in teeth with apical
Microbiologic analysis of teeth with failed
endodontic treatment and the outcome of
4. Abdulkader A, Duguid R, Saunders EM. The
antimicrobial activity of endodontic sealers
5. Torabinejad M, Shabahang Sh. Pulp and
periapical pathosis. In: Torabinejad M, Walton RE.
Principles and practice of Endodontics. 4th ed.
49-67.
6. Torabinejad M, Ung B, Kettering JD. In vitro
bacterial penetration of coronally unsealed
endodontically treated teeth. J Endod 1990; 16:
566-9.
7. Lai CC, Huang FM, Yang HW, Chan Y, Huang
MS, Chou MY et al. Antimicrobial activity of four
root canal sealers against endodontic pathogens.
8. Sipert CR, Husseine RP, Nishiyama CK, Torres SA.
In vitro antimicrobial activity of Fill Canal,
Sealapex, Mineral Trioxide Aggregate, Portland
cement and EndoRez. IntEndod J 2005; 38:
539-43.
9. Gibby SG, Wong Y, Kulild JC, Williams KB, Yao
X, Walker MP. Novel methodology to evaluate the
effect of residual moisture on epoxy resin
sealer/dentine interface: a pilot study. IntEndod J
2011; 44: 236-44.
10. Camilleri J, Mallia B. Evaluation of the
dimensional changes of mineral trioxide aggregate
11. al-Khatib ZZ, Baun RH, Morse DR, Yesilsoy C,
Bhamhiani S, Furst ML. The antimicrobial effect of
various endodontic sealers. Oral Surg Oral Med
Oral Pathol 1990; 70: 784-790.
12. Mickel AK, Wright ER. Growth inhibition of
Streptococcus anginosus (milleri) by three calcium
hydroxide sealers and one zinc oxide-eugenol
13. Tobias RS. Antibacterial properties of dental
21: 155-60.
14. Pumarola J, Berastegui E, Brau E, Canalda C,
Jiménez de Anta MT. Antimicrobial activity of
seven root canal sealers. Result of agar diffusion
15. Chong BS, Owayally ID, Pitt Ford TR, Wilson RF.
Antibacterial activity of potential retrograde root