Original Article

Three-body wear of different composites resins

Homayoun Alaghehmand (DDS)¹, Abdolhamid Alhavaz (DDS)², Mohammad Masoumi (DDS)³

¹. Assistant Professor, Department of Operative Dentistry, Dental Materials Research Center, Faculty of Dentistry, Babol University of Medical Sciences, Babol-Iran
². Assistant Professor, Department of Prosthodontics, Dental Materials Research Center, Faculty of Dentistry, Babol University of Medical Sciences, Babol-Iran.
³. Dentist, Faculty of Dentistry, Babol University of Medical Sciences, Babol-Iran.

Corresponding Author: Abdolhamid Alhavaz, Assistant Professor, Department of Prosthodontics, Faculty of Dentistry, Babol University of Medical Sciences, Babol-Iran.

Received: 22 Apr 2012 Revised: 3 Jun 2012 Accepted: 16 Jun 2012

Abstract

Introduction: Low resistance of composite resins to abrasion is a primary concern in the application of these materials for posterior restorations which are prone to high occlusal loads. This study compared the wear resistance of three types of composites.

Methods: In this laboratory experiment, five specimens of each of the three types of composites (z250, Heliomolar, Opallis) were prepared separately in brass molds. Composites were placed in 1-mm layers and were cured for 40 seconds. Using an abrasive device, Pedeb 1, with a chrome-cobalt abrasor, the specimens were abraded under a 20-MPa force, after 5000, 20000, 40000, 80000, 120000 abrasive rotations. Before and after all abrasion cycles, the specimens were weighed with an electronic balance with a precision of 10⁻⁴ g. The collected data were analyzed using paired samples statistics t-test and ANOVA analysis.

Results: All the specimens showed a reduction pattern from the initial weights to weights after 120000 abrasive rotations. With more abrasive rotations, greater weight reduction occurs and this is of statistical significance. ANOVA analysis showed no significant difference between the three types of composites; yet, the z250 and Heliomolar groups were associated with the least and the greatest amount of wear, respectively.

Conclusions: In all specimens, significant weight reduction occurred after abrasion but there were no significant differences between the 3 types of composites.

Keywords: Abrasion, Composite, Three-body wear.

Introduction

During the recent years, the exceeding expectations of patients regarding the esthetic and strength of anterior and posterior restorations have resulted in an increase in application of composites for posterior restorations. Despite several advantages of composite resins, these restorative materials have certain problems for restoration of posterior teeth, namely low wear resistance (1). Although the failure of composite restorations has decreased, certain factors including high coefficient of thermal expansion, shrinkage stress due to polymerization, microleakage, wear, incomplete curing, recurrent caries, post-restoration sensitivity, color change, and others are still considered as possible reasons for composite restoration failure. Even though several solutions have been suggested for reducing composite wear, this problem still remains unsolved (1-3). It is noteworthy that the importance of wear from...
the clinical point of view, is mainly related to loss of
esthetic and function of the restoration and there exists
little information regarding the systemic effects of
swallowed/inhaled particles cut off composite surface
during abrasion (4). Formerly, due to excessive wear of
composite restorations, these materials were
contraindicated for posterior applications in which
occlusal loads were higher. However, the composites
today are modified to be more resistant to wear (5).

Introduction of composite resins with great wear
resistance has been a considerable improvement in
tooth-colored restorations (6). The amount of wear in
direct composite restorations is directly related to filler
size, polymerization quality, and efficiency of light
curing unit. It has been proven that there is no relation
between stiffness, modulus of elasticity, and wear
resistance and abrasion behavior has been considered
as a failure of key elements in composites (2, 3, 6).

Therefore, abrasion, stiffness, and physical strength
of separate issues are assessed as a clinical quality. In a
study conducted by Kiremitici et al. beta-quartz
glass insert-resin composite restorations showed a
promising two-year clinical performance (7). Xu et al.
appraised the three-body abrasion in an in vitro study
and demonstrated that composite resins reinforced with
silica whiskers had more abrasion resistance compared
to composites reinforced with glass particles (8).
Nagarajan et al. reported that the differences in filler
size and chemical composition of glass fillers had no
effect on the wear behavior of medium filled
composites.

Nevertheless, wear rates of medium filled
composites (with 75-76% filler) were significantly
higher than highly filled composites (9). Knobloch et
al. evaluated the two-body wear of 4 laboratory-
processed composites (Targis, Concept, Belleglass,
Artglass) and 2 direct placement composites
(Heliomolar, Herculite), using enamel as a positive
control. The amount of wear in concept was the least
(limited to enamel) and all the other types of
composites were associated with significantly greater
amounts of wear (10). Considering the increasing
application of novel direct placement composites, this
study was designed to evaluate the wear resistance of
the three types of direct composites.

Methods
In this experiment, the three types of composites
were opt (Opallis, Heliomolar, Z250; all in shade
A3). Five specimens were provided from each group.
Specimens were prepared in 2x10x10-mm cubes in a
brass mold. The mold consisted of two separate
symmetrical complementary pieces with 3 specimen
preparation sites, which could be fixed together by 2
screws. The 3 specimen preparation sites were located
at 1-cm distance from each other and had equal heights
and widths (1x1 mm), while the depths were variables
between 1-3 mm. The 2-mm deep site was used in this
experiment. The composites were placed in layers
(1mm each) and the curing time was 40 seconds.

A low-power light curing unit was used (400
mW/cm²; Astralis7, Vivadent, Liechtenstein). In order
to provide a smooth surface and eliminate air contact,
the specimens were covered with a glass lamella during
curing. Each specimen was numbered using a ¼ round
bur on the inferior surface and they were all stored for
14 days in normal saline in an incubator (37°C).

Before applying abrasive forces, all samples were
dried with air spray and drying paper. The samples’
weights were measured with an electronic
balance (Sartorius AG, Göttingen, Germany) with a
precision of 10⁻⁴ g and were collected. Each specimen
was located in an abrasive test device; Pedeb 1
(designed and made by H.A.). Pedeb 1 is made of two
parts; a rotator on which samples are located, and a
pneumatic system.

The chrome-cobalt abrator with a cross section of
1.98 mm² is attached to the latter and can constantly
apply a 4-kg force to the specimens. These two parts
are fixed in a cabinet and a counter on the rotator
calculates the number of rotations. To simulate three-
body abrasion, the reservoir at the site of specimens
was filled with an abrasive solution, prepared by
diluting toothpaste (Paveh, Paksan co., Iran) at a ratio
of 1:2 with normal saline. The specimens were then
abraded under a 20-MPa force, for 5000, 20000,
40000, 80000, 120000 abrasive rotations. Following
each rotation cycle, all specimens were dried precisely
and weighed. To determine the significance of weight
difference between the specimens before abrasion and
after different abrasive rotations, paired samples
statistics t-test and ANOVA analysis were used.
Three-body wear of different composite resins

Results

In all specimens, before 120000 rotations, weights were reduced and this reduction was statistically significant in all types of composites. In Z250 group, weights before abrasion were significantly different with those after 5000 and 20000 abrasive rotations and so were the weights after 5000 rotations with those after 20000 rotations (table 1). In Heliomolar and Opallis groups, weights after all abrasive rotations were significantly different with one another, except when the weights before abrasion were compared to those after 5000 rotations. The least and the greatest amount of abrasion was found in Z250 and Heliomolar groups, respectively.

Table 1. The average of weight difference between each of the abrasion cycles and pre-abrasion.

<table>
<thead>
<tr>
<th>Abrasion Cycle</th>
<th>Group</th>
<th>Mean±SD</th>
<th>±SE</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>5000</td>
<td>Z250</td>
<td>0.00035±0.0002</td>
<td>0.00015</td>
<td>0.622</td>
</tr>
<tr>
<td></td>
<td>Heliomolar</td>
<td>0.00006±0.000089</td>
<td>0.00004</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Opallis</td>
<td>0.00012±0.00013</td>
<td>0.00005</td>
<td></td>
</tr>
<tr>
<td>20000</td>
<td>Z250</td>
<td>0.0004±0.00058</td>
<td>0.00025</td>
<td>0.796</td>
</tr>
<tr>
<td></td>
<td>Heliomolar</td>
<td>0.0004±0.00028</td>
<td>0.00012</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Opallis</td>
<td>0.0003±0.00016</td>
<td>0.00007</td>
<td></td>
</tr>
<tr>
<td>40000</td>
<td>Z250</td>
<td>0.0007±0.00056</td>
<td>0.00025</td>
<td>0.500</td>
</tr>
<tr>
<td></td>
<td>Heliomolar</td>
<td>0.0008±0.00038</td>
<td>0.00017</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Opallis</td>
<td>0.0005±0.00023</td>
<td>0.0001</td>
<td></td>
</tr>
<tr>
<td>80000</td>
<td>Z250</td>
<td>0.0008±0.00061</td>
<td>0.00027</td>
<td>0.363</td>
</tr>
<tr>
<td></td>
<td>Heliomolar</td>
<td>0.0012±0.00042</td>
<td>0.00019</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Opallis</td>
<td>0.0009±0.00025</td>
<td>0.00011</td>
<td></td>
</tr>
<tr>
<td>120000</td>
<td>Z250</td>
<td>0.0011±0.00071</td>
<td>0.00032</td>
<td>0.207</td>
</tr>
<tr>
<td></td>
<td>Heliomolar</td>
<td>0.0017±0.00061</td>
<td>0.00027</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Opallis</td>
<td>0.0013±0.00028</td>
<td>0.00012</td>
<td></td>
</tr>
</tbody>
</table>

Discussion

The clinical abrasion of composite restorations in posterior teeth has been the primary concern in decision making for replacement of amalgam restorations with composites. Therefore, the manufacturers have applied different chemical modifications to enhance the abrasive behavior and physical-mechanical properties of composites. Nevertheless, composites have remained sensitive and vulnerable to occlusal overloading (11, 12). This might be due to the fact that an ineliminable element of composites is the resin matrix which is greatly sensitive to abrasion.

Moreover, despite the fact that complete polymerization of composites, especially light-cured composites enhances wear resistance in these materials, the current light curing devices and techniques do not allow for complete polymerization of monomers into polymers (13-15). In order to provide sufficient wear resistance for composite materials, it is essential to minimize the distance between filler particles. Silanes can also play a quite efficient role.

Experiments have considered high polymerization contractions, air trapping in composite material, large size of restorations as other factors responsible for increasing wear and failure (7). As a result of time and cost-consuming nature of clinical studies, laboratory simulations have been used extensively; however, simulation of the exact conditions of mouth environment can be quite challenging. In certain situations, it might be possible to simulate more or less precise mechanisms of abrasion. In the current experiment, an abrasive device, pedeb 1, was used to create three-body abrasion.

Yap et al. used a stainless steel abrasor with a rough end (cross section 1mm²) and a 1.6-kg force to evaluate the abrasive behavior of composite materials. It is believed that while antagonists like enamel eventually polish the composite surface and create limited abrasion, a stainless steel can provide standard contact forces on specimens (11, 16).

In the present study, brass molds were used to prepare cube shaped specimens, all of which were stored in incubator for 14 days before abrasion. This is a common procedure in laboratory studies (7, 16, 17).
Studies have revealed that light curing units provide different degrees of polymerization in different depths. Hence, investigators assess the abrasion behavior of materials in different abrasive cycles.

The current study used 5000, 20000, 40000, 80000, 120000 abrasive rotations (18). Since every method and abrasive device has its own characteristics, the absence of studies on Pedeb 1 in literature does not allow for comparison of the current findings with other experiments.

Alaghehmand et al. used this device to evaluate the amount of wear in composites polymerized with either a halogen or a LED light-curing unit (19). The results were comparable in both groups. All specimens in the present study showed a reduction pattern from the initial weights to weights after 120000 abrasive rotations.

With more abrasive rotations greater weight reduction occurs and this is of statistical significance. The direct relation between abrasion and weight of specimens, approved in almost all previous studies suggests weight as a potential factor for the evaluation of the amount of wear (7, 16-18).

ANOVA analysis showed no significant difference among the three types of composites; yet, the z250 and Heliomolar groups were associated with the least and the greatest amount of wear, respectively. High filler content (60%), fine size of filler particles (1 μm), and BCMA monomer with a high molecular weight might have resulted in the least amount of wear in z250 composite specimens.

Acknowledgements
The authors would like to thank the research council of Babol University of Medical Sciences for a grant.

Funding: This article was extracted from an MD students thesis (No 266) of Faculty of Dentistry Babol University of Medical Sciences.

Conflict of interest: There was no conflict of interest.

References